

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (I.T.) I-Semester (Main) Examinations, December - 2015

Digital Electronics and Logic Design

Time: 3 hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (10 X 2=20 Marks)

1. The Decimal number -34 is expressed in 2's complement form as \qquad .
2. Show that NAND gate is an universal gate.
3. Simplify the Boolean function $\mathrm{f}=\left(\left(\mathrm{A}^{\prime}+\mathrm{B}+\mathrm{C}+\mathrm{D}\right)^{\prime}\left((\mathrm{ABC})^{\prime} \mathrm{D}\right)\right)^{\prime}$ using De Morgan's theorem.
4. wit Use a K-map to reduce the given Boplean expression to a minimum SOP form, $f=\left((A B)^{\prime}+A B^{\prime}\right)\left(C D+C^{\prime} D^{\prime}\right)$.
5. Realize a three input EX-NOR gate using two input NOR gates.
6. What are the asynchronous inputs to a flip-flop? How are they used?
7. Distinguish between Mealy and Moore state models.
8. Distinguish between a PLA device and a PAL device in terms of architecture.
9. An FSM circuit uses 10 states. Determine the minimum number of flip-flops required.
10. What is meant by "Configuration" in VHDL?

Part-B (5 X 10=50 Marks)

11. a) Draw the AND - OR gate implementation of the function $F(A, B, C, D)=\Sigma(0,2,5,6,7, B, 1.0)$ after simplifying it in sum - of - products(SOP) form.
b) The dual of complement of a certain Boolean expression is given by $A B C+D^{\prime} E+B C^{\prime} E$.
Find the expression.
12. a) Design a 4 bit comparator logic using logic gates.
b) Write a VHDL program to model a 16:1 MUX using 4:1 MUX blocks in structural modeling style.
13. a) With the help of a logic diagram, describe the operation of a clocked R-S Flip-Flop with
active LOW R and S inputs. Draw the truth table, if it were negatively edge-triggered. [5]
b) Design a binary ripple counter that counts 000 and 111 , and skips the remaining six states
using JK flip flops with negative edge triggering.
14. a) Design an FSM which can detect the sequence 0110 , use D flip-flops.
b) Write a VHDL program to model a 4 bit UP-DOWN counter.
15. a) What is an ASM chart? Explain the building blocks of ASM chart.
b) Draw an ASM chart to design a binary Multiplier and describe the same
16. a) Convert the following decimal numbers to binary, octal and hexadecimal
5, 100, 828
b) Design a binary to gray code converter.[4]
17. Write short notes on any two of the following:
a) Shift registers
b) FSM as an arbiter circuit [5]
c) Digital Hardware design flow [5]
